

A Robust Parser for Unrestricted Greek Text

Sotiris Boutsis1,2, Prokopis Prokopidis1, Voula Giouli1, Stelios Piperidis1,2
1Institute for Language and Speech Processing,

Artemidos 6 & Epidavrou, 151 25 Maroussi, Greece
{sboutsis, prokopis, voula, spip}@ilsp.gr

2National Technical University of Athens

Abstract
In this paper we describe a method for the efficient parsing of real-life Greek texts at the surface syntactic level. A grammar
consisting of non-recursive regular expressions describing Greek phrase structure has been compiled into a cascade of finite
state transducers used to recognize syntactic constituents. The implemented parser lends itself to applications where large
scale text processing is involved, and fast, robust, and relatively accurate syntactic analysis is necessary. The parser has been
evaluated against a ca 34000 word corpus of financial and news texts and achieved promising precision and recall scores.

1. Introduction
Advances in parsing technology have opened new

possibilities for the application of natural language
processing techniques in tasks in which accuracy,
efficiency, and speed constraints either have made
their application impossible in the past or have
restrained their use in small data sets. The
development of robust and time-conscious
deterministic shallow parsers during the last decade
has given rise to new applications and has allowed
existing ones to benefit from linguistic processing
when performing tasks involving large or very large
amounts of real - life texts.

Lexicography is an area where the application of
shallow parsing techniques is prominent. Bourigault
(1992) describes LEXTER, a software package for
extracting terminology in which surface grammatical
analysis of the text is performed first. On that basis,
term extraction takes place, since the grammatical
form of terminological units is claimed to be
relatively predictable. Boutsis et al. (1999) propose a
method which processes bilingual parallel texts
aligned at sentence level. The method implements
statistical and linguistic techniques examining pattern
grammars at both language sides of the corpus in
order to extract bilingual associations between the
terms of the two texts.

In information retrieval, several approaches have
been suggested to raise the indexing unit from the
word level to the multi-word or phrase level in order
to emphasize on content carrying constituents. Zhai
(1997), Evans and Zhai (1996) propose a method for
fast noun phrase parsing and report on the application
of this technique in order to enhance document
indexing performance, in the framework of the
CLARIT system (Evans et al., 1995). Stralkowski
and Carballo (1995) propose the usage of parsing
intensive methods in order to identify terminology,
discover inter-term dependencies for building a
conceptual hierarchy specific to the texts’ domain
and process the user’s natural language requests into
effective search queries.

Parsing techniques are of fundamental importance
in information extraction systems. Pattern grammars

and finite state techniques are performing remarkably
well and some high scoring systems have replaced
linguistically principled parsers with more efficient
surface-syntactic analyzers (Grishman, 1995; Appelt
and Hobbs, 1995).

From the above consideration, it becomes evident
that a parser needs to conform with certain criteria in
order to lend itself to applications like the mentioned
ones. In real world applications, the parser should be
able to deal with real life data, that is free texts, and
should be robust with regards to phenomena
pertinent to these texts. The accuracy of the parser is
critical for its application in demanding
environments, since in certain cases, it is preferable
to partially analyze a phrase instead of producing a
potentially noisy or misleading analysis. Also,
ambiguity in the output could make the parser hard
to integrate in real systems, especially if no later
stage of processing can resolve it.

On these grounds, our efforts have focused on the
design and implementation of a surface syntactic
analyzer for Greek. The analysis is deterministic in
the sense that ambiguous structures remain partially
annotated, and are enclosed in larger constituents.
The parser addresses applications where large scale
text processing is needed but no full blown syntactic
analysis is necessary. Processing speed, system
robustness and relative accuracy of the results are the
guidelines of the system’s design, and are satisfied
by adopting finite state techniques.

2. Background
One of the first deterministic parsers integrated in

general purpose systems has been the Fidditch
parser, (Hindle, 1983a; Hindle, 1983b). It is based on
the principles proposed by Marcus (1980), but it has
been targeted at processing free text including
transcripts of spontaneous speech and at producing
an analysis, partial if necessary, for each sentence.
When Fidditch is unable to build larger constituents
out of subphrases, it moves on to the next phrase, just
including unattached constituents in the resulting
partial parse tree.

Another deterministic parser is CASS (Abney,
1990). It is structured as a pipeline of simple filters.

Every filter makes a definite decision about a specific
problem, but filters at later stages of processing can
revise an earlier decision, in the light of new
evidence discovered after parsing has progressed.
Correcting such errors does not involve backtracking
or unfolding the parser to an earlier state, thus
avoiding speed compromises.

In (Brill, 1993b) and (Satta and Brill, 1996), a
parsing method is proposed such that a
transformational grammar, capable of parsing text
into syntactic trees, is automatically learned from a
training corpus. Training starts from a naive state and
the system learns a set of ordered transformations,
which can be applied to reduce parsing error, by
repeatedly comparing the current state to the proper
phrase structure for each sentence in the training
corpus.

Karlsson et al. (1995), Voutilainen (1993), and
Karlsson (1990) describe a syntactic annotation
algorithm implementing constraint grammar
checking. According to this approach, all possible
syntactic categories are assigned to each word from a
lexicon, in a way similar to part-of-speech (POS)
tagging with constraints. Like POS disambiguation
constraints, syntactic constraints are used to discard
all contextually illegitimate syntactic labels. A flat
syntactic description of each sentence is given in the
output.

3. Method
The system we present in this paper is based

on parsing via finite state techniques, (Abney,
1996; Abney, 1997; Grefenstette, 1996; Ait-
Mokhtar and Channod, 1997). A text can be
analyzed syntactically on the basis of grammars
containing non-recursive rules written in the
form of regular expressions, which can be
translated into finite state automata or
transducers by standard techniques (Roche and
Schabes, 1997) and are then connected to form
a finite state cascade, so that the output of an
automaton or transducer is given as input to the
next. Rules are numbered so as to be applied in a
certain order and can recognize higher level
constituents on the basis of the already described
ones. A basic characteristic of this method is
that parsing is deterministic and no backtracking
takes place. No ambiguity is produced since
each stage takes a definite decision about a
phenomenon’s existence or absence. This does
not mean that ambiguities are resolved but that
they are enclosed inside syntactic chunks, whose
boundaries have been well recognized, although
their internal structure may have not been
decided. Since ambiguity is kept local, only one
partial parse for each sentence is generated. In
many cases, rules are designed to be reliable
when they are applied using longest match, thus

avoiding the need for disambiguation between
different length instances of the same syntactic
category. We utilize rules (Karttunnen, 1997)
that either capture the structure of syntactic
constituents or insert brackets at points believed
to be the beginning or end of syntactic
constituents. Rules are compiled to FST’s using
the FSA6 package (Van Noord and Gerdemann,
1999) and applied to the text using an efficient
C parser.

4. General Architecture
The system architecture is depicted in Figure 1.

Processing is performed through a set of pipelined
standalone modules. The method takes Greek text at
the input and produces a partial syntactic analysis at
the output. The individual stages of processing are:
text handling, POS-tagging, lemmatization, phrase
and clause recognition, and grammatical relations
identification.

Recognizing and labeling surface phenomena in
the text is a necessary prerequisite for most NLP
tasks. At the first stage, basic text handling takes
place making use of a MULTEXT like tokenizer (Di
Christo et al., 1995). This includes identifying word
boundaries, sentence boundaries, dates,
abbreviations, etc. Identifying word and sentence
boundaries involves resolving ambiguity in
punctuation use since structurally recognizable
tokens may contain ambiguous punctuation; this may
be the case for numbers, alphanumeric references,
dates, acronyms and abbreviations. Following
common practice, the tokenizer makes use of a
regular expression definition of words, coupled with
downstream precompiled lists for the Greek language
and simple heuristics for distinguishing between
these abbreviations or other evident abbreviations
and final stops. This proves to be sufficient for
recognizing sentences and words effectively.

After text handling has been performed, text is
channelled to the part-of-speech (POS) tagging and
lemmatisation stage. We use a version of the Brill
(1993a) tagger trained on Greek text and a PAROLE
compatible tagset, which, conforming to the
guidelines set up by TEI and NERC, captures the
morphosyntactic particularities of the Greek
language. There are 584 different part-of-speech
tags. The accuracy is around 90% when all features
are examined and around 96% when only basic POS
categories are taken into account. First, the tagger
assigns initial tags, looking up in a lexicon created
from the manually annotated corpus during training.
A suffix-lexicon is used for initially tagging
unknown words. 799 contextual rules are then
applied to improve the initial phase output. After
part-of-speech tagging has taken place, the lemmas
are retrieved from a Greek morphological lexicon
containing 70K lemmas.

Before the FST grammar is applied to the text,
the tagset is reduced and tailored to the needs of the

parsing task. Using a reduced tagset is advantageous,
since it allows for more compact transducers with a
smaller number of transitions and results in shorter
compilation and parsing times. For instance, gender
features are eliminated, since tests have indicated that
noun phrase recognition can be performed with high
accuracy without the use of such information.
Reduced features, however, are restorable in the
output and can be used by later stages, if needed.
Also, adapting the tagset to the parsing task requires
the inclusion of lexical information in the POS tag of
some words. This is usually the case for prepositions,
adverbs, and conjunctions. For example, the
preposition ��� is tagged as as_se and the
conjunctions ��� , ��� � , and �	� � as conj_cond, which is
indicative of their use in conditional clauses. Words
not displaying the typical syntactic behavior of their
POS are tagged differently. For example, the tags of
the adjectives
����� /all and ���
����������� /whole are
given the prefix olos. This allows grammar rules to
capture the use of these adjectives as predeterminers
and postmodifiers. After all modifications, the tagset
numbers ca. 180 tags.

After tagging, analyzed text is channeled into the
parser. Parsing is performed in two stages. At the
first stage, phrases and clauses are recognized on the
basis of an FST grammar, while, at the second stage,

grammatical relations between recognized
constituents are established on the basis of a
subcategorization lexicon and a pattern matching
mechanism.

5. Corpus
The parser has been evaluated against a text

collection composed of news and financial articles
from online Greek magazines and newspapers. The
total size of the collection is 33869 tokens,
punctuation marks excluded. The texts were
manually annotated by two linguists who used a Java
graphical user interface for this purpose. A number
of files were annotated by both linguists to ensure
inter-annotator consistency. Inter-annotator
agreement is around 95%.

6. Greek Grammar
In order to allow for a syntactic analysis of Greek

text, the grammar contains rules recognizing the
following phrasal categories: adjective phrase, noun
phrase, verb group, prepositional phrase, and adverb
phrase. At the clause level, the parser recognizes
main and several types of subordinate clauses. This
schema follows EAGLES (Leech et al., 1996).

Text
Handling

POS Tagging &
Lemmatization

Phrase and
Clause

Recognition

Grammar

Partially
Annotated

Text

Input
Text

Grammatical
Relations

Identification

Frame
Lexicon

Figure 1: Processing Pipeline

%% i nser t ‘ st op’ symbol bef or e ‘ as’ t ags (pr eposi t i ons)
mar kup(as, st op, []) o

%% gr oup np’ s i n accusat i ve wi t h post modi f yi ng np’ s i n geni t i ve
mar kup([const (' [np_ac' , ' / np_ac] ') , [const (' [np_ge' , ' / np_ge] ') , [{ c j co,
punct _cm} ^ , const (' [np_ge' , ' / np_ge] ')] *] *] , ' [npacmax' , ' / npacmax] ') o

%% mar k pp wi t h possi bl y coor di nat ed np’ s i n accusat i ve
mar kup([st op, as+, { pt ng, cj co, const (' [np_ge' , ' / np_ge] ') , const (' [advp' ,
' / advp] ') } * , const (' [npacmax' , ' / npacmax] ') , [{ c j co, punct _cm} ,
const (' [npacmax' , ' / npacmax] ')] *] , ' [pp' , ' / pp] ') .

<EOR> %% End Of Rul e (st age 1)

%% r emove st op symbol bef or e pr eposi t i ons al r eady par t i c i pat i ng i n pp’ s
[' [pp' , st op] => ' [pp' o

%% mar k pp wi t h possi bl y coor di nat ed np’ s i n geni t i ve
mar kup([st op, as+, { pt ng, cj co, const (' [advp' , ' / advp] ') } * , const (' [np_ge' ,
' / np_ge] ') , [{ c j co, punct _cm} ^ , const (' [np_ge' , ' / np_ge] ')] *] , ' [pp' , ' / pp] ') o

%% del et e t empor ar y mar ker s
{ ' [npacmax' , ' / npacmax] ' , st op} => [] o

<EOR> %% End Of Rul e (st age 2)

Figure 2: Sequence of rules recognizing prepositional phrases

In Figure 2, the set of rules that recognize
prepositional phrases is given. A rule markup(X, y, z)
encloses longest matches of the regular expression X
in y and z, while a rule X => y replaces longest
matches of X with y. Different rules can be composed
into one using the compose (o) operator. As can be
seen, recognition of prepositional phrases takes place
in two stages. At the first stage, phrases composed of
a preposition followed by one or more noun phrases
in accusative are recognized. At the second stage,
phrases composed of a preposition followed by one
or more noun phrases in genitive are recognized.
Adverb phrases and negative particles are also taken
into account.

 A description of the grammar responsible for the
recognition of each syntactic category follows.

6.1. Adverb phrases
Adverb phrases build, in principle, on head

adverbs possibly modified by other adverbs. After
prepositional and noun phrases have been identified
at a later stage, they may be included in the AdvP as
complements of the adverbs.

[advp ��� ��� ����� � / Unfortunately advp] � � ���
	 � � ��
 � � � � / no decision � � � ���� � � / was made …
[advp � � �
�� / apart [pp � �
 / from [np_ac � � 	 � / Nikos np_ac] pp] advp]
[advp ��� ��� � � ������� � / regardless of [np_ge

� � � � �� ��� � � �� / the result np_ge] advp]

6.2. Adjective phrases
Adjective phrases contain one or more adjectives

or passive perfect participles, possibly premodified
by one or more adverbs. Clitic pronouns following
the head of the phrase are also included. Adjectives
and participles separated by commas or coordinating
conjunctions, are enclosed in the same AdjP. There is
a subclassification of AdjPs according to the case of
their head. Thus, adjp_nm represents nominative
AdjPs, adjp_ge genitive AdjPs, and so on. �

 / The [adjp_nm � ���� � � � �� ��� � ���
� � � � � ����� � � � � � / very fast and effective adjp_nm]
� ��� � � � � � / response. �

 [adjp_nm ����� � � � ��� � � � �� � adjp_nm] / Their
everyday � �	� � � � � � / updating…

6.3. Noun phrases
Apart from common and proper nouns, rules for

the identification of noun phrases accept pronouns,
adjectives, and participles as heads.

Any prenominal determiners and modifiers
(pronouns, numerals, adjective phrases) are included
in the NP, whereas postnominal constituents include
adjectives, demonstrative pronouns, and clitic
pronouns. Other postnominal modifiers like NPs in
genitive or PPs are recognized independently of these
base NPs.

The subclassification of AdjPs according to their
case holds for NPs as well.

[np_nm
�

 ��� � � ��	 � � � � ����	 � � ��� � / The impending
visit np_nm] [np_ge � �� � . � 	 � � �� / of Mr. Clinton

np_ge] [pp �!� � / to [np_ac �"� � � � ��� / our country
np_ac] pp] � � � � � �	�� ��� � / will provoke …

6.4. Prepositional phrases
Once NPs have been marked, identification of
prepositional phrases is straightforward. PPs are
composed of a preposition followed by one or more
(coordinated) NPs. Postmodifying NPs in genitive
are also enclosed in the PP. # � � � � � ��� 	 � � � / He has benefited [pp � �
 [np_ac � � � ��� ���� � � / from the acquisition np_ac] [np_ge � ��� ��� ��� � ��	 ��� / of the company np_ge] pp] .

6.5. Verb groups
Verb groups include the head verbal form

together with any auxiliaries for the formation of
periphrastic tenses. Negative, future and subjunctive
particles are enclosed as well. These complements
(clitic pronouns) and modifiers (adverbs), which are
"trapped" between the head verbal form and the
auxiliaries and particles, while retaining their
respective labels, are also included in the verbal
group. �

 $ � � � � ��� /The comission [vg � �%����&� � � /
approved vg] � ���� / the project.. ' � ��� � � � 	 / The doctors [vg � � � [np_ge � (� �
np_ge] [np_ac � np_ac] �)� � [advp ���
 � � advp] ��� � / have not yet said it to them vg] .

Labels vg_s and vg_g are used for the
subclassification of verb groups with a subjunctive
and present participle verb head, respectively. ' � $*� � �+� � 	 �� / The Europeans � � �)��� ��� � ��� /
tried [vg_s �	� �,� �- � � � �)� � / to boycott vg_s] � � � �.� ��� � � � � � / the merger.

[vg_g / � ����� � � 	10 � � ��� / Recognizing vg_g] � ��� �)��� � �)� / his defeat…

6.6. Clauses
After the basic phrasal constituents have been

identified, the parser tries to capture their
organization into clauses. Identification of clauses is
guided by a list of accepted clause markers which are
used to recognize potential clause boundaries.
Subordinating conjunctions, relative pronouns or
larger constituents containing them, adverb phrases,
are used to mark possible clause boundaries. The
existence of exactly one verb group in each clause is
a strong criterion governing segmentation into
clauses.

Both main and subordinate clauses are
recognized. The latter include relative, relative
indefinite, time, conditional, and interrogative
clauses. Finally, clauses which are introduced by a
conjunction that does not unambiguously indicate a
certain type of clause, are labeled "other".

The following examples depict the types of
subordinate clauses the parser recognizes.

Relative clauses: [cl 23� � � � ��	 �)� � / For those
[cl_rel � (� / that � �)4� � �� � / suffer � �
 � 5 � �!5 � �
� ��� ����� � � / under the barbaric regime cl_rel] …cl]

Relative indefinite clauses: [cl [cl_ri � � �� �� /
Those who ��� � � 4 � ��� � ��� /secured � � � � � � �!� � � 	 � �)� � /
their freedom, cl_ri] �. ���.� � ��� / won …cl]

Time clauses: [cl_t � � ��� / When � �&���� � / the
market ��� � � � � � ��� / collapsed cl_t] , [cl �� � � � �� /
shareholders … cl]

Conditional clauses: [cl_c / � / If � �!��5 � � � � � /
the government � � �4�� ��	 ��� � / decides � ��� � � � � �)� �� � /
the suppression � ��� � ��� ��� 	 ��� / of the strike cl_c] , [cl
�� � � ��� 0
 � � �)� / the workers … cl]

Interrogative clauses: [cl � � � � �1� � � � 	 � � � / I
realised cl] [cl_ir �
 � / how much � � 5 �(� � ��� � / will
help �
 � �� / the law … cl_ir]

Other clauses: [cl
�

 � 4�� � � � 	 � � / The newspaper
� � �4 ��� � � � decided cl] [cl_o �	� � �	� � � � � � � � / to
inform �)� � ��� �����%� ��� � � � ��� / its readers … cl_o]

Relative and relative indefinite clauses are always
embedded in other clauses. Clauses of other types are
recognized inside larger clauses, only if trapped in
them.

[cl_c / � / If, [cl_o �&4��� ������� ��� � � ��	 � ��� ������ �
/after the acquisition has been completed cl_o] , � � �
� � � � � �� � �%� �&�) � � � � � � 4 � ���&� � / there are no
available funds cl_c] , [cl ��� � � � � � � � �� � � /we will
proceed … cl] .

6.7. Grammatical relations
Grammatical relations are recognized by a

module that processes texts after all phrase and
clause labels have been unambiguously assigned by
the finite state parser. First, a REF(erence) number is
assigned to each token and syntactic label of the text.
Then the module identifies the grammatical relations
in each sentence, and indicates them by assigning
tags of type STRUCT(ure). The tag consists of the
type of the grammatical relation, and the REF
numbers of the opening and closing brackets of the
dependent constituents. In the example sentence of
the Appendix, the verb � � � � � � � � / informed is
followed by STRUCT<subj_np_nm,949,955>, which
links the head verb with the nominative NP that
begins at REF<949> and ends at REF<955>.

The module identifies phrase heads and, using
their lemmas, retrieves subcategorization frames
from a database containing subcat information for the
5927 most frequent verbs, 4950 most frequent nouns,
and 375 most frequent adjectives of a general
purpose corpus. Frames were manually constructed.
A frame may contain mutually exclusive arguments.
For instance, the frame for the verb � 	 � � / give
includes slots for a noun phrase (subject) in
nominative case, a noun phrase (direct object) in
accusative, a noun phrase (indirect object) in
genitive, and a prepositional phrase (indirect object)
headed by the preposition � � / to. The last two
constituents are alternative realizations of the same
grammatical function. �������

 #subj_np_nm# #obj_np_ac#
#ind_obj_np_ge# #ind_pp_se#

Possible grammatical roles included in the frame
of verbs are nominative subjects, predicative phrases,
direct objects in accusative, indirect objects in
genitive, prepositional phrases functioning as

complements, and clausal arguments. In case a verb
has no frame, it is assigned the default frame
#subj_np_nm#. Nouns and adjectives are examined
for nominal and clausal dependents. For heads with
more than one frames, all possibilities are examined;
the frame with most matches is selected and finally
applied.

Let us examine how subject NPs and predicative
NPs and AdjPs are identified when this is required
by the frame. The module searches at the clause level
for constituents with an np_nm or an adjp_nm label.
In case no np_nm's are found (a very common
situation with a pro-drop language such as Greek), a
null_subj(ect) label is assigned to the verb.
Otherwise, it assigns, by default, the label
subj_np_nm to nominative NPs and the label
pred(icative) to AdjPs. In case the frame of the verb
requires a predicative phrase and only one
nominative NP phrase has been found, it recognises
it as a pred after checking that it is not headed by a
pronoun, in which case the module opts for a
subj_np_nm label, instead. In case two nominative
phrases, separated by punctuation or coordinating
conjunctions, have been found, they are joined into a
larger unit. If a nominative phrase occurs preverbally
and another postverbally, the preverbal one is
recognized as the subject and the other as the
predicative phrase. Other types of dependents are
identified following similar heuristics. Also, genitive
NPs are linked to the preceding phrase. Some
constituents can be linked to either of more than one
heads. For example, an np_ge can be attached to a
verb as its indirect object or to another NP as its
postmodifier. The module resolves the conflict by
attaching the dependent to the head it is closest to.

7. Sample output
In the Appendix, the output of the parser for the

following sample sentence is given. 	

������������� ������������ / The

Agricultural Bank � ������� �� � /
informed ����!�" / the �� ��#�� ���$!�" / in
charge ����$! ��� � � " / researchers � � "
!�� #�% � �� " / of the case # �&� / that
� � ��!� ��%��� � � / were found 33 ���$' ��(��
/ 33 executives ���$! / who � ��(� �
���� (�� �� �&� /had proceeded

 �
�&����� � ��� � " �����������$��) � " / to virtual
subscriptions.

As can be seen from the analysis, one main and
two subordinate clauses have been recognized. The
parser has enclosed the relative sentence starting
with the pronoun *,+.- in the complement sentence
starting with the conjunction /.021 . The verb *�34+65�783:9
in the relative sentence has the frame
#subj_np_nm##advp##pp_se#. Thus, the module has
recognized a PP argument starting with the
preposition ;.< . It also identified the relative pronoun
*=+�- as its nominative subject, by checking the
respective POS tag (PnReNe03PlNmXx) assigned by
the tagger.

8. Results

Constituent

Type
Precision

(Corrected
Input)

Precision
(Non Corrected

Input)

Recall
(Corrected

Input)

Recall
(Non Corrected

Input)
adjp_nm 0.95 0.85 0.96 0.78
adjp_ge 0.97 0.91 0.96 0.92
adjp_ac 0.96 0.84 0.97 0.89
np_nm 0.93 0.85 0.93 0.83
np_ge 0.94 0.89 0.94 0.93
np_ac 0.95 0.85 0.95 0.88
advp 0.92 0.85 0.91 0.88
pp 0.87 0.84 0.86 0.81
vg 0.94 0.94 0.97 0.97

vg_s 0.95 0.95 0.90 0.90
vg_g 1.00 1.00 1.00 1.00

cl 0.70 0.64 0.81 0.75
cl_r 0.80 0.79 0.80 0.79
cl_ri 1.00 1.00 0.67 0.67
cl_ir 0.75 0.70 0.78 0.75
cl_c 0.77 0.66 0.77 0.66
cl_t 0.78 0.71 0.84 0.76
cl_o 0.73 0.68 0.74 0.71

Figure 3: Phrase Recognition Performance

Grammatical
Relations Type

Precision
(Corrected

Input)

Precision
(Non Corrected

Input)

Recall
(Corrected

Input)

Recall
(Non Corrected

Input)
Subjects 0.95 0.79 0.75 0.56

Null subjects 0.67 0.53 0.96 0.88
Predicative

Phrases
0.81 0.76 0.84 0.63

Direct objects in
accusative

0.79 0.62 0.82 0.69

PP arguments 0.76 0.72 0.72 0.64
Dependents in

genitive
0.91 0.88 0.92 0.71

Clausal
arguments

0.84 0.71 0.8 0.58

Figure 4: Grammatical Relations Recognition Performance

Precision and recall measures have been
calculated given the definitions that follow:

Precision
Correct Identified Instances
Total Identified Instances

�

Recall
Correct Identified Instances

Total Instances
�

Performance estimations per syntactic category
and grammatical function are displayed in Figures 3
and 4. We give precision and recall values for two
different configurations. In the first configuration, the
output of the POS tagger is manually corrected

before it is given to the parser. In the second
configuration, no intervention in the pipeline of
Figure 1 takes place. So, in the first case we measure
the performance of the parsing phase alone, while in
the second case we measure the performance of the
whole pipeline. As far as speed of analysis is
concerned, speed of parsing (excluding tokenization
and POS tagging) is ~260 words/sec in a 550Mhz PC
running Windows 98.

9. Conclusion
The results obtained so far are encouraging. The

accuracy of the output ranges for most cases between
70% and 90%, with phrase recognition performance
being the highest. Thus, the parser is suitable for

integration in application systems where large scale
text processing is needed but no full blown syntactic
analysis is necessary. Processing speed, system
robustness and relative accuracy of results are the
system’s strong points. At the moment, efforts are
focused on improving clause parsing and
subject/complement recognition. Along these lines,
we plan to augment the frame database and examine
the possibility of automatically acquiring sub-
categorization patterns.

10. References
Abney, S., 1990. Rapid Incremental Parsing with

Repair. In Proceedings of the 6th New OED
Conference, Electronic Text Research.

Abney, S., 1996. Partial Parsing via Finite-State
Cascades. In Proceedings of the Robust Parsing
Workshop, ESSLLI.

Abney, S., 1997. Part of Speech Tagging and Partial
Parsing. In Corpus-Based Methods in Language
and Speech Processing, Steve Young and Gerrit
Bloothooft (eds.), Kluwer Academic Publishers,
pp. 118-136.

Ait-Mokhtar, S. and J.P. Channod, 1997. Incremental
Finite State Parsing. In Proceedings of ANLP, pp.
72-79.

Appelt, D. and J. Hobbs, 1995. SRI International
FASTUS System - MUC6 Test Results and
Analysis. In Proceedings of MUC6.

Bourigault, D., 1992. Surface Grammatical Analysis
for the Extraction of Terminological Noun
Phrases. In Proceedings of the 14th International
Conference on Computational Linguistics.

Boutsis, S., S. Piperidis and I. Demiros, 1999.
Generating Bilingual Lexical Equivalences from
Parallel Texts, Applied Artificial Intelligence.

Brill, E., 1993a. Transformation-Based Error-Driven
Parsing. In Proceedings of the 3rd International
Workshop on Parsing Technologies.

Brill, E., 1993b. A Corpus-based Approach to
Language Learning, Doctoral Dissertation,
University of Pennsylvania.

Di Christo, P., S. Harie, C. de Loupy, N. Ide, and J.
Veronis, 1995. Set of Programs for Segmentation
and Lexical Look up, Deliverable 2.2.1,
MULTEXT, LRE 62-050.

Evans, D. and C. Zhai, 1996. Noun-Phrase Analysis
in Unrestricted Text for Information Retrieval. In
Proceedings of the 34th Annual Meeting of
Association for Computational Linguistics.

Evans, D., N. Milic-Frayling, and R. G. Lefferts,
1995. CLARIT TREC-4 Experiments. In
Proceedings of the 4th Text Retrieval Conference
(TREC-4).

Grefenstette, G., 1996. Light Parsing as Finite State
Filtering. In Proceedings of Workshop on
Extended Finite State Models of Language, ECAI.

Grishman, R., 1995. The NYU System for MUC-6 or
Where’s the Syntax? In Proceedings of MUC6.

Hindle, D., 1983a. User Manual for Fidditch.
Technical Memorandum #7590-142, Naval
Research Laboratory.

Hindle, D., 1983b. Deterministic Parsing of Syntactic
Non-Fluences. In Proceedings of the 21st Annual
Meeting of the Association of Computational
Linguistics.

Karlsson, F., A. Voutilainen, J. Hekkila, and A.
Anttila, (eds.), 1995. Constraint Grammar: a
Language Independent System for Parsing
Unrestricted Text. Mouton de Gruyter.

Karlsson, F., 1990. Constraint Grammar as a
Framework for Parsing Running Text. In
Proceedings of 10th International Conference in
Computational Linguistics.

Karttunnen L., 1997. The Replace Operator. In
Finite State Language Processing, ed. Roche Em.
and Schabes Yv., MIT Press

Leech, G., R. Barnett, and P. Kahrel, 1996.
Provisional Recommendations and Guidelines for
the Syntactic Annotation of Corpora, EAGLES
DOCUMENT EAG—TCWG—SASG/1.8.

Marcus, M., 1980. A Theory of Syntactic Recognition
for Natural Language, MIT Press

Papageorgiou, H, 1996. Part of Speech
Disambiguation. In Hybrid Techniques for
Bilingual Corpus Processing, PhD dissertation,
National Technical University of Athens.

Roche, E. and Y. Schabes (eds.), 1997. Finite State
Language Processing. MIT Press

Satta, G. and E. Brill, 1996. Efficient
Transformation-Based Parsing. In Proceedings of
the 34st Annual Meeting of the Association of
Computational Linguistics.

Stralkowski, T. and J. P. Carballo, 1995. Natural
Language Information Retrieval: TREC-4 Report.
In Proceedings of the 4th Text Retrieval
Conference (TREC-4).

Van Noord, G. and Gerdemann D., 1999. An
Extendible Regular Expression Compiler for
Finite-state Approaches in Natural Language
Processing. WIA, Potsdam, Germany

Voutilainen, A., 1993. NPtool, a Detector of English
Noun Phrases. In Proceedings of the Workshop on
Very Large Corpora.

Zhai, C., 1997. Fast Statistical Parsing of Noun
Phrases for Document Indexing. In Proceedings of
the 5th Conference on Applied Natural Language
Processing.

11. Appendix

)SENT <S>
REF<948> SYN [cl
REF<949> SYN [np_nm
REF<950> TOK � � AtDfFeSgNm atdfsgnm
REF<951> SYN [adjp_nm
REF<952> TOK �������
	�� �� ����������� ����� AjBaFeSgNm ajbasgnm
REF<953> SYN /adjp_nm]
REF<954> TOK ������� �"!�# $&%�'�(*)"+", NoCmFeSgNm nosgnm
REF<955> SYN /np_nm]
REF<956> SYN [vg
REF<957> TOK -/.�021�3�4�576 - 8/9�:<;�8�=�>?9�@ VbMnIdPa03SgXxPeAvXx vb
STRUCT<subj_np_nm,949,955> STRUCT<cl_arg,971,1010> STRUCT<compl_np_ac,959,965>
REF<958> SYN /vg]
REF<959> SYN [np_ac
REF<960> TOK A�B�C D E AtDfMaPlAc atdfplac
REF<961> SYN [adjp_ac
REF<962> TOK F G�H I�J�K L�M N O�P�Q R�S
T U�V AjBaMaPlAc ajbaplac
REF<963> SYN /adjp_ac]
REF<964> TOK W�X�WZY
[�\]"^"_ `�a�`Zb
c�d*eZfhg NoCmMaPlAc noplac
 STRUCT<arg_np_ge,966,969>
REF<965> SYN /np_ac]
REF<966> SYN [np_ge
REF<967> TOK ikjml n AtDfFeSgGe atdfsgge
REF<968> TOK o�p q�r�s�t�umv w�x*y�z�{�|�} NoCmFeSgGe nosgge
REF<969> SYN /np_ge]
REF<970> SYN /cl]
REF<971> SYN [cl_o
REF<972> TOK ~���� �
��� CjSb cjsb_other
REF<973> CHUNK _ _
REF<974> SYN [vg
REF<975> TOK �&� �Z� �������<� �
� ��� �Z�*��� ���*� VbMnIdPa03PlXxPePvXx vb
 STRUCT<subj_np_nm,977,980>
REF<976> SYN /vg]
REF<977> SYN [np_nm
REF<978> DIG 33 33 DIG dig
REF<979> TOK ���"�k���Z��� �����k �¡Z¢
£�¤ NoCmNePlNm noplnm
REF<980> SYN /np_nm]
REF<981> SYN [cl_r
REF<982> TOK ¥*¦
§ ¨ ©�ª PnReNe03PlNmXx pn_pou
REF<983> SYN [vg
REF<984> TOK «"¬ �®�¯ °k±
² VbMnIdPa03PlXxIpAvXx vb_exw
REF<985> TOK ³m´�µ�¶�·7´
¸h¹ º"» ¼*½�¾�¿�À7½�Á VbMnNfXxXxXxXxPeAvXx vb_inf
 STRUCT<pp_arg,987,995> STRUCT<subj_np_nm,982,982>
REF<986> SYN /vg]
REF<987> SYN [pp
REF<988> TOK Â*Ã Ä�Å AsPpSp as_se
REF<989> SYN [np_ac
REF<990> SYN [adjp_ac
REF<991> TOK Æ"Ç È É"Ê�Ç È Ë"Ì Í"Î Ï Ð�Ñ�Î Ï�Ò�Ó AjBaFePlAc ajbaplac
REF<992> SYN /adjp_ac]
REF<993> TOK ÔmÕ�Ö�×ZØ�Ø�Õ�Ù*Ú<Û"Ü Ý*Þ�ß�àZá�á�Þ�â ãhä NoCmFePlAc noplac
REF<994> SYN /np_ac]
REF<995> SYN /pp]
REF<996> SYN /cl_r]
REF<997> SYN /cl_o]
REF<998> PTERM_P . . PTERM_P punct_fs
)SENT </S>

